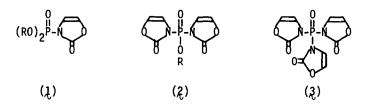
HIGHLY EFFICIENT OXAZOLONE-DERIVED REAGENTS FOR BETA-LACTAM FORMATION FROM BETA-AMINO ACIDS


Takehisa Kunieda,^{*a} Tomohisa Nagamatsu^a Tsunehiko Higuchi,^b and Masaaki Hirobe^{*b} Faculty of Pharmaceutical Sciences, Kumamoto University,^a Kumamoto 862 and Faculty of Pharmaceutical Sciences, University of Tokyo,^b Tokyo 113 Japan

<u>Summary</u>: Based on a unique leaving ability of 2-oxazolone moiety, highly efficient reagents have been developed for the formation of β -lactam compounds from β -amino acids including a facile preparation of the penam, a basic skeleton of penicillins.

Continuing work on the 2-oxazolone chemistry has revealed that 2-oxazolone moiety has synthetic potential as a unique leaving group in $carboxyl^{1}$ and phosphoryl activating processes.²⁾ This paper describes further utility of such a simple heterocycle which plays an important role in a facile preparation of β -lactam compounds from β -amino acids.

There have appeared a substantial number of methods for the constructions of β -lactam rings³ due to great interests in the β -lactam antibiotics, the most widely prescribed drugs in therapy. There still exist ongoing needs to develop general and effective methods for smooth cyclization of β -amino acids to β -lactams, since the conventional reagents such as DCC,⁴ SOCl₂⁵ and bis-(5-nitro-2-pyridyl) trichloroethyl phosphate⁶ have some limited use as partly pointed out.^{7,8} Among the methods available, the Mukaiyama-Ohno's procedure using triphenylphosphine/2,2'-dipyridyl disulfide in acetonitrile⁷ might be most versatile and has been widely employed for such condensations. Application of this method to 2-thiazolidineacetic acid was not promising and resulted in poor yield (8%) of the penam, a basic skeleton of penicillin-type β -lactams⁹

So, the phosphorus compounds 1 - 3 activated by 2-oxazolone moiety were systematically examined as condensing reagents for the formation of β -lactam compounds from free β -amino acids, since we previously recognized the usefulness of these types of reagents in peptide¹) and thioester¹⁰ synthesis as well as β -lactam formation.¹¹ Compounds studied in this work involve diphenyl 2oxo-3-oxazolinylphosphonate (1: R=Ph),¹⁾ p-chlorophenyl bis(2-oxo-3-oxazolin-

yl)phosphinate (2: R=p-Cl-Ph)²⁾ and tris(2-oxo-3-oxazolinyl)phosphine oxide (3). These reagents are readily obtainable from 2-oxazolone and the corresponding halogenophosphorus compounds in the presence of bases and the crystalline agents thus obtained are equally stable enough to be stored in a desiccator for months without any practical decompositions. Thus, in analogy with compound 1 and 2, the tris-oxazolide 3 (mp 167°, ¹H-NMR δ 7.30-7.52 (m)) was prepared in 77% yield as colorless crystals on treatment of 2-oxazolone with phosphoryl chloride in the presence of triethylamine.¹²)

When β -amino acids (4) were treated with equimolar amounts of the condensing reagents (1, 2 or 3) in boiling acetonitrile in concentration of 10^{-2} M, cyclization smoothly proceeded to give high to excellent yields of monocyclic N-substituted and unsubstituted β -lactams (5). The results are summarized in

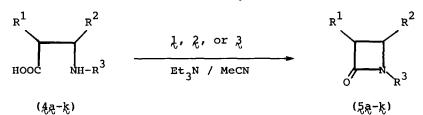
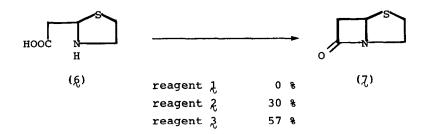



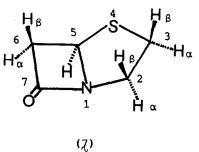
Table 1. As indicated, compound \mathfrak{Z} is the most powerful dehydrating reagent and mono-oxazolide \mathfrak{L} appears to be rather less effective. A typical procedure is given as follows. A mixture of N-benzyl- β -alanine (1 mmol), the reagent \mathfrak{Z} (1 mmol) and $\mathrm{Et}_{\mathfrak{Z}}N$ (6 mmol) in $\mathrm{CH}_{\mathfrak{Z}}CN$ (100 ml) was heated under reflux for 6h. Removal of the solvent in vacuo, followed by chromatographic purification on silica gel ($\mathrm{CH}_2\mathrm{Cl}_2$ -EtOAc) gave N-benzyl-2-azetidinone ($\mathfrak{Z}\mathfrak{Z}$) in 96% yield. The use of smaller amounts of base (2 - 3 mmol) is preferable in cyclization with reagents \mathfrak{L} and \mathfrak{Z} . The 2-oxazolone heterocycle is readily water-soluble and this can greatly simplify the procedures to separate β -lactam compounds from the reaction mixture.

We next applied the present method to the synthesis of the β -lactam skeleton of penicillins, 4-thia-1-azabicyclo[3.2.0]heptan-7-one (?) (penam), which had been attained only in a poor yield (8%).⁹ Thus, a solution of 2-thiazolidineacetic acid (β) in acetonitrile was treated with reagents 2 and 3 to give 30% and 57% yields of the penam,¹³ respectively, under the same conditions as above, while reagent 1 was completely unreactive.

2204

β-amino a	acid	R ¹	R ²	R ³	β-lactam	Isolated Yield		
(<u>ද</u>)					(ភ្)	ł	£	Ą
 १२		Н	Н	CH2Ph		85 %	87 %	96 %
æ		^{Сн} 3	н	CH2Ph	ĘŔ	88	92	93
Æ		н	снз	CH ₂ Ph	æ	89	85	95
4 2 ((S)	н	сооснз	CH2Ph	5ूर (s)	52	71	82
£ e ((S)	Н	CH2COOCH3	CH ₂ Ph	<u>5</u> ्र (S)	75	81	87
Æŧ		Н	CH3	CH2CH2Ph	Æ	74	86	88
£ą		н	сн ₃	n-Pro	ze	60	73	84
£ ₽		н	сн ₃	n-Bu	Ęħ	63	76	85
ŧi		сн ₃	H	H	Ęį	53	73	75
Łį		Н	CH ₃	н	ええ	57	80	80
表卷		н	Ph	н	表表	50	75	88

Table 1. Preparation of Monocyclic β -Lactams^{a)}


a) The reactions were carried out in boiling CH_3CN for 6h on a 1 - 3 mmol scale of β -amino acids in concentration of 10^{-2} M. The β -lactam compounds described here were fully characterized by direct comparision with the authentic samples $^{6-8,14)}$ and/or spectral analysis. $^{15)}$

In conclusion, the present reagents, particularly 2 and 3, have the advantageous features of high yields, simple working procedures and a wide applicability, which permit the practical synthesis of the penam itself, besides good stability on plolonged storage. Further utility of the reagents as dehydrating and condensing agents is being explored.

References and Notes:

- T. Kunieda, Y. Abe, Y. Iitaka, and M. Hirobe, <u>J. Org. Chem.</u>, <u>47</u>, 4291 (1982); T. Kunieda, T. Higuchi, Y. Abe, and M. Hirobe, <u>Tetrahedron</u>, <u>39</u>, 3253 (1983).
- 2) T. Nagamatsu and T. Kunieda, Tetrahedron Lett., 28, 2375 (1987).
- W. Dürckheimer, J. Blumbach, R. Lattrell, and K. H. Scheunemann, <u>Angew</u>. <u>Chem. Int. Ed. Engl.</u>, 24, 180 (1985); M. J. Miller, <u>Acc. Chem. Res</u>., 19, 49 (1986); R. B. Morin and M. Gorman Eds. "Chemistry and Biology of β-Lactam Antibiotics", Academic Press, New York 1982; M. Hashimoto, T. Komori, and T. Kamiya, <u>J. Am. Chem. Soc</u>., 28, 3023 (1976); A. Imada, K. Kitano, K. Kintaka, M. Muroi, and M. Asai, <u>Nature</u>, 289, 590 (1981); T. T. Howarth, A. G. Brown, and T. King, <u>J. Chem. Soc</u>. Chem. Commun., 1976, 266.

- 4) D. G. Melillo, I. Shinkai, T. Liu, K. Ryan, and M. Sletzinger, <u>Tetrahedron</u> <u>Lett.</u>, <u>1980</u>, 2783; T. Kametani, S. Huang, S. Yokohama, Y. Suzuki, and M. Ihara, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 2060 (1980).
- 5) J. C. Sheehan and E. J. Corey, Org. React., 9, 388 (1957).
- 6) S. Kim, S. B. Chang and P. H. Lee, <u>Tetrahedron Lett</u>., 28, 2735 (1987).
- 7) S. Kobayashi, T. Iimori, T. Izawa, and M. Ohno, <u>J. Am. Chem. Soc</u>., <u>103</u>, 2406 (1981).
- 8) H. Huang, N. Iwasawa, and T. Mukaiyama, Chem. Lett., 1984, 1465.
- 9) T. Chiba, J. Sakaki, T. Takahashi, and C. Kaneko, <u>Chem. Lett.</u>, 1985, 659;
 T. Chiba, J. Sakaki, T. Takahashi, K. Aoki, A. Kamiyama, C. Kaneko, and
 M. Sato, <u>J. Chem. Soc. Perkin Trans.</u> 1, 1987, 1845.
- 10) T. Kunieda, Y. Abe, and M. Hirobe, Chem. Lett., 1981, 1427.
- 11) T. Kunieda, T. Higuchi, Y. Abe, and M. Hirobe, 4th International Conf. on Org. Syn. (IUPAC), 1982 Tokyo. Abstracts p 204; 102th Annual Meeting of Pharm. Soc. Jpn, 1982 Osaka. Abstracts p 439.
- Reagent 3 was routinely obtained in practically pure forms by washing the precipitates deposited with hot CH₂Cl₂.
- 13) For this cyclization, reagents DCC and SOCl₂/Et₃N were reported to be ineffective and Ph₃P/(2-PyS)₂ was of limited value, yielding the penam in 8% yield.⁹⁾ The penam structure (7) was fully characterized by spectral (MS and ¹H-NMR¹⁶⁾) analyses. Ms, m/z(M⁺) calcd 129.0248, obsd 129.0265.

¹H-NMR(400 MHz, CDCl₃), δ 2.90 (ddd, 1H, $\underline{J}_{2\alpha,2\beta}$ =12.10Hz, $\underline{J}_{2\alpha,3\alpha}$ =6.60Hz, $\underline{J}_{2\alpha,3\beta}$ =6.96Hz, 2-Ha), 2.96 (dd, 1H, $\underline{J}_{5,6\beta}$ =1.47Hz, $\underline{J}_{6\alpha,6\beta}$ =15.76Hz, 6-H α H β), 3.20 (ddd, 1H, $\underline{J}_{2\beta,3\alpha}$ =6.60Hz, $\underline{J}_{2\alpha,3\alpha}$ =3.30 Hz, $\underline{J}_{3\alpha,3\beta}$ =11.00Hz, 3-Ha), 3.29 (ddd, 1H, $\underline{J}_{2\alpha,3\beta}$ =6.96Hz, $\underline{J}_{2\beta,3\beta}$ =6.60Hz, $\underline{J}_{3\alpha,3\beta}$ =11.00Hz, 3-H β), 3.53 (dd, 1H, $\underline{J}_{5,6\alpha}$ =4.03Hz, $\underline{J}_{6\alpha,6\beta}$ =15.76Hz, 6-H α), 4.15 (ddd, 1H, $\underline{J}_{2\alpha,2\beta}$ =12.10Hz, $\underline{J}_{2\beta,3\alpha}$ =3.30 Hz, $\underline{J}_{2\beta,3\beta}$ =6.60Hz, 2-H β), 4.96 (dd, 1H, $\underline{J}_{5,6\beta}$ = 1.47Hz, $\underline{J}_{5,6\alpha}$ =4.03Hz, 5-H). Assignments for the

C-2 protons were tentatively made on the basis of the data reported (R. Busson and H. Vanderhaeghe, <u>J. Org. Chem., 41</u>, 2561, (1976)).

- 14) Y. Watanabe and T. Mukaiyama, Chem. Lett., 1981, 443.
- 15) ¹H-NMR (60 MHz, CDCl₃), $5f_{z}$: δ 1.14(d, 3H, \underline{J} =6.2Hz), 2.35 (dd, 1H, \underline{J} =2.2Hz, \underline{J} =14.3Hz), 2.65 - 3.84 (m, 6H), 7.20 (br, s, 5H); $5g_{z}$: δ 0.93 (t, 3H, \underline{J} =7.3 Hz), 1.30 - 1.90 (m, 2H), 1.32 (d, 3H, \underline{J} =5.9Hz), 2.48 (dd, 1H, \underline{J} =2.2Hz, \underline{J} = 14.3Hz), 2.68 - 3.45 (m, 3H), 3.51 - 3.92 (m, 1H); $5h_{z}$: δ 0.92 (t, 3H, \underline{J} =7.3 Hz), 1.31 (d, 3H, \underline{J} =5.9Hz), 1.18 - 1.72 (m, 4H), 2.43 (dd, 1H, \underline{J} =2.2Hz, \underline{J} = 14.3Hz), 2.78 - 3.36 (m, 3H), 3.41 - 3.86 (m, 1H).
- 16) There are apparent discrepancies between the present data and the reported. $^{9)}$

(Received in Japan 13 January 1988)